

Figure 2.-Electronic spectra of $((C_6H_5)_3As)_2RuS_4(CF_3)_4$ in dichloromethane solution in the presence of $(C_6H_5)_3As$. Concentration of $((C_6H_5)_3As)_2RuS_4C_4(CF_3)_4$ is 7.52×10^{-5} *F* throughout. Concentrations of $(C_6H_5)_3As: \cdots$, no excess added; *M.* $-$, $5.18 \times 10^{-4} M$; $-$, $2.64 \times 10^{-3} M$; $-$, $\geq 1.00 \times 10^{-1}$

rium constants for the reaction

 $(base)RuS₄C₄(CF₈)₄ + base$ $\rightarrow (base)_2RuS₄C₄(CF₈)₄$

These equilibrium constants decrease, as is generally the case with group V donors, down the following series: $(C_6H_5)_3P$ $(K = 153 \pm 71. \text{ mol}^{-1})$ > $(C_6H_5)_3As$ $(K =$ (68 ± 3) \geq $(C_6H_5)_3Sb (K = 9 \pm 2).$

The great similarity in chemical and physical properties between (base) $RuS_4C_4(CF_4)_4$ and (base) $FeS_4C_4(C F_3$)₄ suggests that they have very similar structures. X-Ray crystallographic study of $(C_6H_5)_3AsFeS_4C_4$ - $(CF_3)_4$ reveals that it is a square pyramid with triphenylarsine in the axial position;18 a similar geometry is proposed for $(base)RuS_4C_4(CF_3)_4$. The bisadducts probably have a pseudooctahedral structure with the bases in trans positions; a five-coordinate structure with a nonchelating dithiolene appears most unlikely.

Acknowledgment.--We thank the National Institutes of Health (Grant AM 12182) and the Research Committee of the University of California, for support of this research.

(18) E. F. Epstein and I. Bernal, *Inorg. Chem.,* **in press.**

CONTRIBUTION FROM THE DEPARTMENTS OF CHEMISTRY, WESTERN ILLINOIS UNIVERSITY, MACOMB, ILLINOIS **61455,** AND NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA **26707**

Kinetics of the Acid and Base Hydrolysis of Di-p-hydroxo- tetrakis(ethylenediamine)dicobalt(III) Cation1

BY ABBAS A. EL-AWADY* AND 2 *2.* **HUGUS,** JR.

Received April *27, 1970*

The acid hydrolysis of di- μ -hydroxo-tetrakis(ethylenediamine)dicobalt(III) cation (hereafter called dimer) was studied using spectrophotometry and the base hydrolysis of this same complex was investigated using a pH-Stat method. The data were found to be well fitted by the assumption of two successive first-order reactions. The apparent first-order rate constants for the acid hydrolysis show a complex dependence on hydrogen ion concentration of the following form: k_1 (apparent) = $(C_{10} + C_{11}(H^+))/((1 + K_1(H^+))$ and k_2 (apparent) = $(C_{21}(H^+) + C_{22}(H^+)^2)/(1 + K_2(H^+))$. For the base hydrolysis, the apparent rate constant for the first step as a function of pH was satisfactorily fitted by the equation k_3 (apparent) = $(C_{30}$ + $C_{31}(OH^-)/(1 + K_3(OH^-))$, while the value of k_4 showed but slight change with pH. A mechanism is proposed in which a singly bridged species acts as an intermediate in the course of the reaction. The acid hydrolysis was studied at nine wavelengths, six hydrogen ion concentrations, and two temperatures, $viz.$, 25.00 ± 0.02 and 35.00 ± 0.05 °, while the base hydrolysis was studied at $25.00 \pm 0.01^{\circ}$ and over the pH range $9.3-10.4$. At 25.00° and 0.1127 F HClO₄ $(\mu = 1.0 \text{ } M, \text{ NaClO}_4)$ the rate constants for the acid hydrolysis are k_1 (apparent) = $(11.82 \pm 0.08) \times 10^{-4}$ sec⁻¹ and k_2 (apparent) = (3.76 ± 0.01)
rate constants for the acid hydrolysis are k_1 (apparent) = $(11.82 \pm 0.08) \times 10^{-4}$ sec \times 10⁻⁴ sec⁻¹. For the base hydrolysis at 25.00° and 2.43 \times 10⁻⁴ F NaOH (μ = 1.0 *M*, NaNO₃) the values for the rate constants are $k_3 = (3.53 \pm 0.08) \times 10^{-3}$ sec⁻¹ and $k_4 = (0.373 \pm 0.01) \times 10^{-4}$ sec⁻¹. Values of $\Delta H \pm$ and $\Delta S \pm$ for the various kinetic parameters in the acid hydrolysis are reported.

Introduction

The doubly bridged cobalt(III) dimeric species $Co₂$ - $(en)_4(OH)_2$ ⁴⁺ decomposes in acid solutions to give the diaquo ion $Co(en)_2(OH_2)_2^{3+}$ and in basic solutions to give the dihydroxo ion $Co(en)_2(OH)_2^+$.

Rasmussen and Bjerrum2 studied these reactions spectrophotometrically. They indicated that the accuracy in the case of the basic hydrolysis is rather low due to the similarity of the visible and near-ultraviolet spectra of the dimer to those of the dihydroxo ion. No final results nor detailed study of the basic hydrolysis was given by them.

Although a detailed study and a mechanism were

given for the acid hydrolysis, it was observed that a representative run given in ref *2* has the first experimental point taken after 1 hr from the time of mixing the reactants. It was also observed that their experiments were done at only three wavelengths, *viz.*, 560, 540, 520 nm, all in the visible region. This indicated that a repetition of the study of Rasmussen and Bjerrum was desirable.

Experimental Section

Materials.-All chemical reagents used were analytical reagent grade. The water was first deionized by passing it through a mixed-bed cation-anion-exchange resin and then distilled from very dilute potassium permanganate-sodium hydroxide solution. Sodium hydroxide stock solutions were prepared from carbonate-free concentrated NaOH **.3** Sodium perchlorate was pre-

⁽¹⁾ Based on the Ph.D. thesis of A. **A. El-Awady, University of Minne sota, Minneapolis, Minn. ,55455.**

⁽²⁾ *S.* **E. Rasmussen and** J. **Bjerrum,** *Acta Chent.* **Scand., 9, 735 (1855).**

⁽³⁾ I. M. Kolthoff and E. B. Sandell, "Text Book of Quantitative Inorganic Analysis," Macmillaa, New York, N. *Y.,* **1952.**

pared by neutralization of reagent grade 70% perchloric acid with reagent grade sodium carbonate and recrystallized three times from hot distilled water.

Preparation of Complexes.--With minor modifications the complex salts used were prepared according to methods described in the literature. *cis*-Diaquobis(ethylenediamine)cobalt-(111) perchlorate was prepared from the carbonato salt according to the method described by Linhard and Stirn.⁴ Anal. Calcd for $[Co(en)_2(H_2O)_2]$ (ClO₄)₃: Co 11.48. Found: Co, 11.52.

Di- μ -hydroxo-tetrakis(ethylenediamine)dicobalt(III) nitrate was prepared from the corresponding bromide, $5-7$ which in turn was prepared from the dithionate salt. The dithionate salt was prepared by heating **cis-hydroxoaquobis(ethy1enediamine)cobalt-** (III) dithionate^{8,9} in an electric oven at 110° until constant weight was obtained. *Anal*. Calcd for $[(en)_4Co_2(OH)_2](NO_3)_4$. 0.5Hz0: *Co,* 18.16. Found: Co, 18.14.

Di-p-hydroxo-tetrakis(ethylenediamine)dicobalt(III) perchlorate was prepared from the corresponding bromide by dissolving in water and precipitating the perchlorate salt with excess $NaClO₄$. **A** solution of the perchlorate salt gave no precipitate with Ag-NO\$, indicating the absence of bromide ions. *Anal.* Calcd for $[(en)_4Co_2(OH)_2]$ $(ClO_4)_4$: Co, 14.92; ClO₄, 50.35. Found: Co, 14.89; CIO₄, 49.98.

Kinetic Runs.-The kinetic runs for the acid hydrolysis were followed spectrophotometrically by recording the change in absorbance at fixed wavelength as a function of time. To begin a run, a weighed sample of the perchlorate salt was added to a volumetric flask containing an KaC104-HC104 solution at the temperature of the run. The solution was diluted to the mark and mixed thoroughly, and a sample was transferred to a cell contained in the thermostated cell compartment of the Cary Model 14 spectrophotometer. Measurements were made at some or all of nine wavelengths and six different hydrogen ion concentrations at each of two temperatures. The wavelengths used were 275, 290, 350, 365, 380, 400, 520, 540, and 560 nm. The two temperatures used were 25.00 ± 0.02 and $35.00 \pm 0.05^{\circ}$.

The kinetic data for the base hydrolysis were obtained using the pH-Stat method.^{10,11} This method is primarily suitable for recording as a function of time the volume of base required to keep a sample at a constant pH. Thus, complete reaction rate curves were obtained by maintaining the pH fixed at a preselected value, with continuous correction for the base used up during the reaction. **A** recorded plot, then, of milliequivalents (or volume) of base *us.* time provides a reaction rate curve.

The experimental data were obtained using a Radiometer recording pH-Stat obtained from Radiometer, Copenhagen NV, Denmark.

The chart paper scale of the syringe recorder was calibrated by titration of the standard sodium hydroxide stock solution, used in all experiments, with a standard solution of potassium hydrogen phthalate. Experimentally the solutions for the kinetic runs were prepared by adding a known weight of the dimer nitrate to an NaNO₃ solution in a volumetric flask maintained at $25.00 \pm 0.01^{\circ}$. The mixture was then diluted to the mark and mixed thoroughly. Thirty milliliters of this solution was then transferred to the thermostated reaction vessel. The pH-Stat was set to the desired pH, and the volume of standard sodium hydroxide required to keep the pH at the set value was traced by the recorder. No corrections for the volume of the added NaOH solution were needed since these volumes did not exceed 1 *.O* ml in any of the experiments performed. The final pH of the solution was determined by measuring the pH of the solution immediately after the reaction was over using a Radiometer pH meter, Model 4.

Results

Acid Hydrolysis.—The visible and ultraviolet spectra of the dimer as well as those of cis -(en)₂Co(OH₂)₂³⁺ are

- **(4)** M. Linhard and G. Stirn, %. *Anovg. AUg. Chem.,* **268, 105 (1952).**
- *(5)* **A.** Werner and J. Rapiport, *Jzisfzis Liebigs Am. Chem.,* **376, 84 (1910).**
- *(6)* J. Dubsky, *J. PYakl. Chein.,* **(21 90, 70,85-89 (1914).**
- *(7)* R. J. Meyer, Ed.," Gmelins Handbuch der anorganischen Chemie," Vol. **58,** Part B, **1930, pp 346-347.**
	- (8) J. Dubsky, *J. P~akt. Chein.,* **[2] 90, 84 (1914).**
	- **(9) A.** Werner, *BEY.,* **40, 284 (1907).**
- (IO) **C. F.** Jacobsen and J. Leonis, "Methods of Biochemical Analysis," Vol. **IV,** Interscience, New York, N. *Y.,* **1957, pp 111-210.**
	- **(11) H.** V. Malmstadt and **E.** H. Piepmeier, *Anal. Chein.,* **37, 34 (1965).**

reported in several places.¹²⁻¹⁴ The spectra of these two compounds differ widely in the visible and ultraviolet regions with two isosbestic points at 443 ± 2 and 464 ± 2 nm with molar absorbancy indices of 62.0 \pm 1 and 46.5 \pm 0.5 M^{-1} cm⁻¹, respectively. Figures 1 and 2 display the spectral changes during a typical hydrolysis run.

An overall look at the spectra given in Figures 1 and **2** shows two major points of interest, namely, the region

Figure 1.—Change in absorption spectrum of the dimer $(C_0 =$ 0.355 m*F*) in 0.0305 *F* HClO₄ (μ = 1.00 *M*, NaClO₄) with time at 25.00'; reading downward at 520 nm, reaction times are 7, 40, 126, 215, 304, 398, and 518 min and 1 week later.

Figure 2.—Change in absorption spectrum of the dimer (C_0 = 0.36 m*F*) in 0.030 *F* HClO₄ (μ = 1.00 *M*, NaClO₄) with time at 25.00'; reading downward at 300 nm, reaction times are 12, 46, 133, 221, 309, 402, and 423 min and 1 week later.

between 360 and 380 nm and that in the vicinity of 270 nm. If the conversion of the dimer to the diaquo species was a one-step process or if no appreciable concentration of an intermediate was formed in a more complicated scheme, a monotonic change of optical density from that of the dimer to that of the diaquo species would have been observed in all regions of the spectrum. This, however, is not the state of affairs, and a noticeable increase in optical density is observed

- **(12) J.** Bjerrum and S. E. Rasmussen, **Ada** *Chem. Scand.,* **6, 1265 (1952).**
- **(13) F.** Basolo, *J. Amev. Chein. Soc.,* **73, 4393 (1950).**
- **(14)** *Y.* Innmura and Y. Kondo, *Nippon Kagaku Zasshi,* **74, 627 (1953);** *Chem. Absti.,* **48, 2476 (1954).**

at **270** nm and between 360 and 380 nm in the early stages of reaction. This feature indicates that at least one intermediate is formed in appreciable concentration in the course of the reaction.

The maximum number of species that could be present in the reaction mixture was determined using a statistical method^{15,16} which utilizes the Beer-Lambert law for a multicomponent system. The results of such an analysis indicated that a maximum of three species occurs in all cases.

Treatment of Data.^{-The data for the acid hydrolysis} were found to be well fitted by an empirical equation of the form

$$
D_t - D_{\infty} = Ae^{-kt} + Be^{-kt} \tag{1}
$$

where D_t is the absorbance of the reaction mixture at time *t*, D_{∞} is the absorbance at infinite time, A and B are two constants, and k_1 and k_2 are rate constants.

Equation 1 suggests that the reaction occurs by two successive first-order steps of the form

$$
R \xrightarrow{k_1} I \xrightarrow{k_2} P \tag{2}
$$

where R, I, and P represent the dimer, an intermediate, and the diaquo product, respectively. The concentration of each of these species given as functions of the initial concentration of the dimer $[R_0]$ and time t are given by

$$
[\mathbf{R}] = [\mathbf{R}_0]e^{-k_1t} \tag{3}
$$

$$
[K] = [K_0]e^{-\kappa_1 t} \qquad (5)
$$

$$
[I] = ([R_0]k_1/(k_2 - k_1))(e^{-k_1 t} - e^{-k_2 t}) \qquad (4)
$$

$$
[P] = [R_0] \left\{ 1 + \frac{1}{k_1 - k_2} (k_2 e^{-k_1 t} - k_1 e^{-k_2 t}) \right\}
$$
 (5)

In a solution having an optical path length of 1 cm, the absorbance at any time is given by

$$
D = \epsilon_{\rm R}[{\rm R}] + \epsilon_{\rm I}[{\rm I}] + \epsilon_{\rm P}[{\rm P}] \tag{6}
$$

where ϵ_R , ϵ_I , and ϵ_P are the molar absorbances of R, I,

tion. Initial values of k_1 and k_2 were obtained graphically by this method, and these were used to get the final values using an iterative least-squares treatment. **A** computer program was written for this purpose and the final results were obtained using a Control Data Corp. 1604 computer. The final least-squares values for *kl* and *k2* are given in Table I.

The apparent first-order rate constants k_1 and k_2

TABLE I LEAST-SQUARES VALUES OF THE RATE CONSTANTS FOR THE ACID HYDROLYSIS^a

Temp,			
$^{\circ}$ c $^{\circ}$	$(H+)$, M	104 <i>k</i> ₁ , sec ⁻¹	10^{4} k ₂ , sec ⁻¹
25.00	0.0042	1.06 ± 0.05	0.62 ± 0.04
25.00	0.0101	2.02 ± 0.05	0.86 ± 0.03
25.00	0.0201	3.52 ± 0.07	1.15 ± 0.02
25.00	0.0301	4.87 ± 0.05	1.38 ± 0.01
25.00	0.0416	6.15 \pm 0.08	1.69 ± 0.01
25.00	0.1127	11.82 ± 0.08	3.76 ± 0.01
35.00	0.0046	3.68 ± 0.05	1.59 ± 0.02
35.00	0.0113	6.00 ± 0.12	2.52 ± 0.01
35.00	0.0226	9.48 ± 0.15	3.52 ± 0.03
35.00	0.0342	13.25 ± 0.15	4.45 ± 0.02
35.00	0.0457	16.83 ± 0.18	5.18 ± 0.03
35.00	0.1127	26.53 ± 0.25	9.73 ± 0.05

^a Ionic strength was adjusted to 1.0 using sodium perchlorate.

exhibit hydrogen ion dependences that were satisfactorily fitted by the empirical relationships

$$
k_1(\text{apparent}) = \frac{C_{10} + C_{11}(H^+)}{1 + K_1(H^+)}
$$
(8)

$$
k_2(\text{apparent}) = \frac{C_{21}(H^+) + C_{22}(H^+)^2}{1 + K_2(H^+)}
$$
(9)

Least-squares fitting of the data to these forms gave the values listed in Table II. Recalculation of k_1 and k_2 using the parameters obtained from eq 8 and 9 gave values that are in good agreement with experimental values.

and P, respectively. Substituting (3), (4), and (5) into (6) and rearranging we get

$$
D - D_2 = \left\{ D_0 + \frac{D_1 k_1}{k_2 - k_1} + \frac{D_2 k_2}{k_1 - k_2} \right\} e^{-k_1 t} + \frac{\left\{ D_1 k_1}{k_1 - k_2} - \frac{D_2 k_1}{k_1 - k_2} \right\} e^{-k_2 t} \quad (7)
$$

where D_0 , D_1 , and D_2 are absorbances corresponding to solutions made of pure dimer, pure intermediate, and pure diaquo complexes, respectively. *Dz* will, thus, be the same as the absorbance of the reaction mixture at infinite time. Equation *7* reduces to eq 1 with *A* and *B* representing the preexponential factors.

On the assumption that k_1 is larger than k_2 , a plot of On the assumption that k_1 is larger than k_2 , a plot of log $(D - D_2)$ vs. time should give a straight line at long $\log (D - D_2)$ *vs.* time should give a straight line at long times; a plot of log $((D - D_2) - Be^{-k_2 t})$ *vs.* time should also give a straight line in the early stages of the reac-

The parameters of k_2 , however, are interdependent and as such were not very well determined, particularly at **25".** It was, thus, decided to fix the value of the parameter K_2 and determine the best values for C_{21} and *Cz2* subject to that restriction. The results for such an analysis for different assumed values of K_2 are given in Table 111.

An overall look at Table 111, especially with reference to the quotients C_{21}/K_2 and C_{22}/K_2 , would indicate

TABLE 111 PARAMETERS OF THE HYDROGEN DEPENDENCE OF K_{α} Λ 7.95[°]

⁽¹⁵⁾ I<. **M.** Wallace, *J. Phys. Chem.,* **64,** *899 (1960).*

⁽¹⁶⁾ A more careful analysis was done by us and is *to* be published.

that these quotients vary but slightly with the assumed values of K_2 . A consideration of the energetics of what we interpret to be a protonation reaction, whose equilibrium constant is K_2 (see the 35° value for K_2), would impose an upper limit on the *25'* value. We feel that the value of 1000 chosen is about as large as is reasonable. This value corresponds to $\Delta H^{\pm} = -25$ kcal/mol and ΔS^{\pm} = -72 cal/deg mol, and larger values of K_2 at *25'* would increase the magnitude of each of these quantities.

Base Hydrolysis.—The data for the base hydrolysis of the dimer (the dimer nitrate was used for solubility reasons) were well fitted by the assumption that the reaction takes place by two consecutive first-order steps. **A** similar treatment to that discussed for the acid hydrolysis was developed and least-squares fit to an equation of the form

$$
C_{\infty} - C_t = A' e^{-kt} + B' e^{-kt} \tag{10}
$$

where C_{∞} and C_{t} represent the concentration of the OH^- ions consumed during the reaction at infinite time and at time *t,* respectively, given in arbitrary concentration units. The values of the rate constants k_3 and k_4 obtained from a least-squares treatment are given in Table IV.

TABLE IV LEAST-SQUARES VALUES OF THE FIRST-ORDER RATE CONSTANTS OF THE BASIC HYDROLYSIS" AT 25.00'

pН	$104(OH^-)$, M	$103k3$, sec ⁻¹	$105k4$, sec ⁻¹
10.385	2.427	3.53 ± 0.08	3.73 ± 0.10
10.300	1.995	2.95 ± 0.10	3.48 ± 0.17
10.280	1.905	2.77 ± 0.05	3.68 ± 0.28
10.140	1.380	2.16 ± 0.03	3.82 ± 0.12
10.130	1.349	2.18 ± 0.08	3.10 ± 0.18
10.090	1.230	1.94 ± 0.01	3.33 ± 0.22
9.940	0.871	1.39 ± 0.02	4.32 ± 0.17
9.915	0.822	1.42 ± 0.02	3.42 ± 0.10
9.905	0.804	1.36 ± 0.03	3.87 ± 0.17
9.900	0.794	1.37 ± 0.04	3.40 ± 0.18
9.730	0.537	0.98 ± 0.04	4.07 ± 0.12
9.660	0.457	0.80 ± 0.01	3.57 ± 0.20
9.580	0.380	0.63 ± 0.01	4.50 ± 0.20
9.513	0.320	0.59 ± 0.02	3.88 ± 0.21
9.450	0.280	0.54 ± 0.02	2.85 ± 0.21
9.300	0.200	0.39 ± 0.01	3.40 ± 0.15

a Ionic strength adjusted to 1.0 *M* with NaNO_3 .

The apparent first-order rate constant *k3* exhibits a hydroxide ion dependence that was satisfactorily fitted by the equation

$$
k_3(\text{apparent}) = \frac{C_{30} + C_{31}(\text{OH}^-)}{1 + K_3(\text{OH}^-)} \tag{11}
$$

Least-squares fitting of the data in this form resulted in the values $C_{30} = (3.78 \pm 1.7) \times 10^{-5} \text{ sec}^{-1}$, $C_{31} =$ 180 ± 7 M^{-1} sec⁻¹, and $K_3 = 1150 \pm 300$ M^{-1} . The rate constant k_4 showed but a slight change with pH.

Discussion

As was noted in the previous sections, the data for the hydrolysis of the dimer are well fitted by an empirical relation given by eq *1.* The two exponential parts in eq I, as well as those in eq *7,* could be interchanged without affecting the calculations nor the results.

Consequently, the apparent first-order rate constants k_1 and k_2 , as well as k_3 and k_4 , do not necessarily represent k_1 and k_2 , respectively, in eq 2. We are, thus, inclined to believe that the type of mechanism suggested and the hydrogen ion dependences derived from these mechanisms will correlate our experimental rate constants to various reactions in going from the dimer to the final products.

The interpretation of the experimental rate law could very likely be done using a variety of mechanisms, each involving a quite different chemistry for the reaction. We propose, however, that any mechanism should involve the formation of a single hydroxobridged dimeric species as an intermediate. This is very likely since simultaneous cleavage of the two hydroxo bridges is improbable.

In the following, we will concern ourselves with two types of mechanisms, each of which involves a different chemistry for the reaction. Thus, consider the series of reactions for the acid cleavage of the dimer

These chemical reactions lead to the rate lams

$$
-\frac{d(dimer)}{dt} = k_{A}(dimer) = \left[\frac{k_{10} + k_{11}(H^{+})}{1 + K_{1}(H^{+})}\right](dimer) \quad (12)
$$

and

 $\frac{d(produced)}{dt} = k_B(intermediate) =$ \overline{dt}

$$
\frac{k_{21}K_2(H^+)+k_{22}K_2(H^+)^2}{1+K_2(H^+)}(\text{intermediate})\quad (13)
$$

In this mechanism, *ka* has the same hydrogen ion dependence as our experimental k_1 , and k_3 has the dependence of the experimental *kz.* One of the major assumptions of this mechanism is the protonation of the dimer and the intermediate in a fast reversible step. Unfortunately, we do not have any substantial experimental evidence for this assumption.

An alternate mechanism can be suggested using a generalized formulation of the mechanism by Hoffman and Taube¹⁷ for the acid cleavage of the closely related

⁽¹⁷⁾ A. B. Hoffman and H. Taube, *Inorg. Chewz.,* **7, 003** (1968)

octaammine system $(H_3N)_8Co_2(OH)_2^{4+}$

This mechanism leads to the steady-state rate law

$$
-\frac{d \ln (\text{dimer})}{dt} = k_{A}' = \frac{k_{1}k_{3} + (k_{1}k_{4} + k_{2}k_{3})(H^{+}) + k_{2}k_{4}(H^{+})^{2}}{(k_{-1} + k_{3}) + (k_{-2}K + k_{4})(H^{+})}
$$
\n(14)

 k_A ['] resembles the experimental k_2 . It predicts that k_2 should have a finite intercept. Since both k_1 and k_3 represent water reactions, their value will be small relative to the specific rate constants of acid reactions. The product k_1k_3 could, thus, be very small compared to other terms in the numerator to warrant its neglect. If, however, we make the assumption that k_3 alone is very small, we can write

$$
k_{A}' = \frac{(k_1 k_4 / k_{-1})(H^+) + (k_2 k_4 / k_{-1})(H^+)^2}{1 + ((k_{-2}K + k_4) / k_{-1})(H^+)}
$$
(15)

This gives the same hydrogen ion dependence as the experimental k_2 . In addition, we could write the rate law

$$
\frac{d(produced)}{dt} = k_B' (intermediate) =
$$
\n
$$
\left[\frac{k_3 + k_4(H^+)}{1 + K(H^+)}\right] (intermediate)
$$
 (16)

This predicts that k_B' has the same hydrogen ion dependence as our experimental rate constant k_1 . The activation parameters for some of the specific rate constants in these mechanisms are given in Table V.

The base hydrolysis of the dimer can be interpreted by mechanisms similar to those discussed for the acid hydrolysis. Consider, for example, the mechanism

fast $H_2O \bigvee k$

2(en)₂Co(OH)₂ + $\frac{\text{fast}}{\text{OH}^{-}}$ (en)₂Co(OH₂)(OH)^{2 +} + (en)₂Co(OH)₂ +

This mechanism leads to the rate law

$$
\frac{d(intermediate)}{dt} = k_o(dimer) - k_d(intermediate)
$$
 (17)

where

$$
k_{\rm c} = \frac{k_{30} + k_{31} K_3({\rm OH}^{-})}{1 + K_3({\rm OH}^{-})}
$$
(18)

and

$$
k_{\rm d} = k_4 \tag{19}
$$

This mechanism predicts that the rate constant *k,* given in (18) has the same hydroxide ion dependence as the experimental k_3 ; k_d given in (19) has the dependence of experimental *kq.*

An alternate mechanism is given by the series of reactions

 $(\text{en})_2\text{Co}(\text{OH})_2 + (\text{en})_2\text{Co}(\text{OH})(\text{OH}_2)^2 + \frac{\text{fast}}{\text{OH}^2}2(\text{en})_2\text{Co}(\text{OH})_2 +$

This mechanism leads to the steady-state rate law

$$
-\frac{d \ln (\text{dimer})}{dt} = \frac{k_1 k_6 + k_5 k_8 (\text{OH}^-)}{(k_{-1} + k_6) + k_{-5} K (\text{OH}^-)}
$$
(20)

and

$$
\frac{\text{d} \ln (\text{product})}{\text{d}t} = k_6 \tag{21}
$$

The mechanism proposed here for the base hydrolysis is subject to the fact that the experimental data showed some scatter. The experimental rate constant k_4

(apparent) is not very well determined. Its hydroxide ion dependence is, thus, relatively unknown. It is only considering our experimental errors that we suggest its independence of the hydroxide ion concentration.

In addition to the closely related octaammine system¹⁷ discussed previously, a number of other systems have also been reported, particularly those dealing with

chromium analogs. $18,19$ In all of these systems, a singly hydroxo-bridged dimer is suggested as an intermediate in the hydrolysis. As far as we know, no base hydrolysis has been reported for these or similar complexes.

(18) G. Thompson, Ph.D. Dissertation, University of California, Berke ley, Calif., 1964.

(19) D. *Wolcott* and J. B. Hunt, *Inovg. Chem.,* '7, **755** (1968).

CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY. BOSTON UNIVERSITY, BOSTON, MASSACHUSETTS 02215

Bridging and Nonbridging Ligand Effects in Some Reversible Reductions of Macrocyclic Complexes of Cobalt(III)¹

BY MARIA P. LITEPLO² AND JOHN F. ENDICOTT*3

Received August 28, 1970

The reversible one-electron reductions of trans-CoL $(OH_2)_2^{3+}$ (L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene or $5,7,7,12,14,14$ -hexamethyl-1,4,7,11-tetraazacyclotetradecane) by Ru(NH₃) e^{2} +, Cr²⁺, and V²⁺ have been examined. The outer-sphere $Ru(NH_3)_6^{2+}$ reductions are more rapid than similar reductions of $Co(NH_3)_5OH_2^{3+}$ and $Co(NH_3)_6$ ³⁺ with differences in reactivity being very close to those predicted from variations in the oxidation potentials of the cobalt(II)-cobalt(III) couples. The variations with $[H^+]$ of reaction rate show the expected qualitative trends for $Ru(NH_3)s^2$ ⁺ (rate decreases with increasing pH) and Cr²⁺ (rate increases with increasing pH). However, the acid dependence of the Cr^{2+} reactions is complex in its details and the total chemical behavior is not compatible with the "classical" attribution of an extraordinary electron mediating (or "conducting") capacity to an OH⁻ bridging ligand.

Despite the large number of mechanistic studies involving cobalt(III) oxidants,⁴ explanations of the range and patterns of reactivity are in many cases controversial or still lacking. It has been particularly difficult to obtain experimental information which reflects on the role played by bridging ligands in innersphere electron-transfer reactions.⁴ The experimental ambiguities contrast with the considerable interest in theoretical models of possible mediating effects of such bridging ligands.⁵⁻⁹ Many of the key issues are dramatized by comparisons of the rates of reactions in which hydroxide functions as a bridging group to reactions which are bridged by a water molecule. In the mechanistically clear cases of Cr^{2+} reductions of cobalt(III) oxidants,¹⁰⁻¹² an enhancement of about 10^6 has generally been attributed to the hydroxy-bridged path over the aquo-bridged path. There has been a tendency to view this enhancement of rate as the result

(Grant AM08737) is gratefully acknowledged. (b) Taken in part from the Ph.D. dissertation of M. P. Liteplo, Boston University, 1970.

(2) NASA predoctoral trainee, 1966-1969.

- (3) Author to whom correspondence may be addressed at the Department of Chemistry, Wayne State University, Detroit, Mich. 48202.
- (4) For recent reviews see: (a) A. G. Sykes, *Advan. Inovg. Chem. Radio chem.*, **10**, 153 (1967); (b) E. S. Gould and H. Taube, *Accounts Chem. Res.*, **2**, 321 (1969).
-
-
-
-
- (9) P. P. Schmidt, *Anst. J. Chein.,* 22, 673 (1969).
- (10) (a) **12.** K. Murman, H. Taube, and F. **A.** Posey, *J. Ainei.. Chein.* Soc.,
- (11) (a) A. Zwickel and H. Taube, *ibid.,* **81,** 1288 (1059); (b) *ibid,,* **88,** 793
- (12) (a) R. I). Cannou and J. E. Earley, *ibid.,* **87,** 8246 (1965); (b) *ibid.,* (1961). **88,** 1872 (1966).

path. l7 In striking contrast to the very high reactivity of (1) (a) Partial support of this research by the Public Health Service hydroxy complexes in inner-sphere reactions, CO-

- ²⁸⁹ from outer-sphere electron-transfer reactions. Such *from* outer-sphere electron-transfer reactions. Such
-
- (8) W. L. Reynolds and R. W. Lumry, "Mechanisms of Electron Trans-
fer," Ronald Press, New York, N. Y., 1966.
-
- 79,262 (1957); (b) W. Kruseand **€1.** Taube, *ibid.,* 82, 826 (1960).
	- (16) (a) M. Green, K. Schug, and H. Taube, *Inoug. Chem.,* **4,** 1184 (1965); (b) **H.** Diebler, P. H. Dodel, and H. Taube, *ibid.,* **S,** 1688 (1966).

578 (1968).

(17) R. C. Patel and J. F. Endicott, *J. Amev. Chem.* Soc., 90, 6364 (1968). (18) 0. J. Parker and J. H. Espenson, *ibid.,* **91,** 1968 (1969).

of some unique mediating property possessed by OHto a greater extent than by H_2O . This view has persisted¹³ in the face of several considerations which should have raised serious doubts: (1) the hydroxy complexes should be thermodynamically more difficult to reduce (owing to the relative instability of the cobalt(I1) hydroxide; this effect apparently dominates in the corresponding outer-sphere reactions^{14,15}); (2) OH⁻ should have a lower electron affinity than H_2O ; and **(3)** many stable hydroxy-bridged binuclear species are known in aqueous solution while stable aquo-bridged species are unknown. Relatively recently it has been pointed out that the case of cobalt(II1) oxidants may be unique in that the cobalt(II1)-bridging ligand bond may be greatly stretched in the activated complex^{10a,16} so that the overall reaction energetics could require a relatively great reactivity for the hydroxy-bridged

 $(NH₃)₅OH²⁺$ has been found to be less reactive than $Co(NH₃)₅OH₂³⁺$ in outer-sphere reductions with Ru- $(NH_3)_6^{2+15}$ and $Cr(bipy)_3^{2+14}$ On the basis of these limited observations it has been proposed 14,15 that the relative reactivities of hydroxy and aquo complexes ^{221 (1969)}.

^{221 (1969)}. might be useful criteria for distinguishing inner-sphere

² (5) L. E. Orgel, Report of the Tenth Solvay Conference, Brussels, 1956, p

² (1959) **100 might be useful criteria for distinguish** (6) J. Halpern and L. E. Orgel, *Discuss I?avaday Soc.,* 29, 32 (1960). criteria have- been used to help clarify reactions of mechanistically ambiguous aquo ions. **(7)** D. George and J. S. Gritlith, *Enzymes,* **1,** 247 (1959).

> fer," Ronald Press, New York, N. *Y.,* 1966. (13) For example, see discussion in M. Anbar, *Quart. Re%, Chew. Soc.,* 22, (14) A. Zwickel and H. Taube, *Discuss. Faraday* **SOC.,** 29, 42 (1960). (15) J. F. Endicott and **H.** Taube, *J. Amev. Chem.* **SOC., 86,** 1686 (1964).